Revision Lecture 10

International Diversification

Why Invest Overseas?

Foreign Exchange Returns

RAUDMSFT=[(1+RAUDMSFT)(1+ΔSUSD)]R^{MSFT}_{AUD} = [(1+R^{MSFT}_{AUD})(1+\Delta S_{USD})]

Where

RAUDMSFT=232.1355.4855.48=3.18R^{MSFT}_{AUD} = \frac{232.13-55.48}{55.48} = 3.18

And

ΔSUSD=1.56251.37651.3765=0.1351\Delta S_{USD} = \frac{1.5625-1.3765}{1.3765}=0.1351

RAUDMSFT=[(1+3.18)(1+0.1351)]R^{MSFT}_{AUD} = [(1+3.18)(1+0.1351)]

General Formula

RAsset(FC)HC=[(1+RAsset(FC))(1+RFC)]1R^{Asset(FC)_{HC}} = [(1+R^{Asset(FC)})(1+R_{FC})]-1

where

Foreign Returns and risk

alt text

Adding up volatilities

alt text

cov(x,y)=ρx,yσxσycov(x, y) = \rho_{x,y} \sigma_{x} \sigma_{y}

If correlation (ρ\rho) = 1, the volatility of the dollar return is the sum of the foreign equity volatility and currency return volatility.

alt text

Key results of portfolio theory

International Correlations & Risk Diversification

alt text

International Correlations

  1. different regulation, tax laws
  2. different industrial structure
  3. different cultures
  4. affected by different shocks
  5. affected differently by same shocks

Case for International Diversification

alt text

Integrating with other Economies (international stocks)

Risk and Return

alt text

alt text

Expected Return of the portfolio

E(rp)=i=1NωiE(ri)E(r_{p})=\sum ^{N}_{i=1}\omega_{i}E(r_{i})

=0.49.15%+0.35.29%+0.35.56%= 0.4 \cdot 9.15\% + 0.3 \cdot 5.29\% + 0.3 \cdot 5.56\%

=0.0692=0.0692

Variance of the Portfolio

Var(rp)=i=1N(ωi)2Var(ri)+2i=1Nj=i+1NωiωjCov(ri,rj)Var(r_{p})=\sum ^{N}_{i=1}(\omega_{i})^{2}Var(r_{i})+2\sum^{N}_{i=1} \sum^{N}_{j=i+1}\omega _{i}\omega_{j}Cov(r_{i}, r_{j})

Does Diversification work elsewhere?

Below: increase in Sharpe ratio from global rather than domestic investment

alt text

Why List (or Cross-List) on Foreign Exchanges?

Reasons to List (i.e. a solo listing) or Cross-List