Revision lecture 6

Hedging Economic Exposure

Change in real exchange rate

st+1=st1+π$1+π£=1.301.041.08=$1.2519/£s_{t+1}=s_{t}\cdot \frac{1+\pi _{\$}}{1+\pi _{\pounds}}=1.30\cdot \frac{1.04}{1.08}=\$1.2519 / \pounds

Et+1=$1.2519/£$15600£129600=1.04E_{t+1} = \frac{\$1.2519/\pounds}{\frac{\$15600}{\pounds 129600}} = 1.04

Real exchange rate change

ΔE=Et+1A/BEtA/BEtA/B=Et+1A/BEtA/B1\Delta E = \frac{E^{A/B}_{t+1}-E^{A/B}_{t}}{E^{A/B}_{t}} = \frac{E^{A/B}_{t+1}}{E^{A/B}_{t}} -1

1+ΔE=(1+Δst+1)(1+πB,t+1)1+πA,t+11+\Delta E = \frac{(1+\Delta s_{t+1})\cdot (1+\pi_{B,t+1})}{1+\pi_{A,t+1}}

Real exchange rates and Profitability

Revenue from sales:

P(M,$)Q(M,Aus)P(M, \$) \cdot Q(M, Aus)

Revenue from French Sales

P(M,)Q(M,Fr)S($/)P(M, €) \cdot Q(M, Fr) \cdot S(\$ /€)

Cost of Production

C(M,$)[Q(M,Fr)+Q(M,Aus)]C(M, \$) \cdot [Q(M, Fr) + Q(M, Aus)]

P(M,)Q(M,Fr)S($/)P($)\frac{P(M, €) \cdot Q(M, Fr) \cdot S(\$ /€)}{P(\$)}

=S($/)P()P($)P(M,)P()Q(M,Fr)= \frac{S(\$ /€) \cdot P(€)}{P(\$)} \cdot \frac{P(M, €)}{P(€)} \cdot Q(M, Fr)

  1. The real exchange rate;
  2. The relative price of mangoes in France; and
  3. The quantity of mangoes sold in France

The Source of Economic Exposure

A Real-World Example: Honda Motors

Impact of Economic Exposure

Quantifying Economic Exposure

V=j=1TCFj(1+r)j V = \sum ^{T} _{j=1} \frac{CF_{j}}{(1+r)^{j}}

Natural Hedges

alt text

Exchange rate Changes and Profit Margins

alt text

Why would this make sense?