Revision Lecture 7

Cost of Capital & Political Risk

Integrated

Segmented

Causes of Segmentation

Market liquidity

Transaction Costs

Measuring Country Risk

Country risk = ability to pay + willingness to pay\text{Country risk = ability to pay + willingness to pay}

What about capital controls?

ICRG Country Risk Components

alt text alt text

Corruption

Political Risk

Political Risk

Hedging Political Risk

  1. Take conservative approach:
  1. Minimize exposure to political risk:
  1. Purchase insurance:

Estimating the Cost of Capital

WACC=E(re)EV+E(rd)(a+τ)DVWACC=E(r_{e})\cdot \frac{E}{V} + E(r_{d})(a+\tau)\frac{D}{V}

E(re)=rf+βe(E(rM)rf) E(r_{e}) = r_{f} + \beta_{e}(E(r_{M})-r_{f})

Domestic CAPM

E(ri)=rf+βeDomestic((rMD)rf),      βi=cov(ri,rMD)var(rMD) E(r_{i}) = r_{f} + \beta^{Domestic}_{e}((r^{D}_{M})-r_{f}), \;\;\; \beta_{i} = \frac{cov(r_{i}, r^{D}_{M})}{var(r^{D}_{M})}

E(re)=rf+cov(ri,rMD)[(rMD)rf]var(rMD) E(r_{e}) = r_{f} + cov(r_{i}, r^{D}_{M})\frac{[(r^{D}_{M})-r_{f}]}{var(r^{D}_{M})}

World CAPM:

E(re)=rf+βeWorld(E(rMW)rf),    βeW=cov(ri,rMW)var(rMW) E(r_{e}) = r_{f} + \beta^{World}_{e}(E(r^{W}_{M})-r_{f}), \;\; \beta_{e}^{W} = \frac{cov(r_{i}, r^{W}_{M})}{var(r^{W}_{M})}

Applying the CAPM

alt text

Getting the benchmark wrong

  1. First, estimate expected return of the home market (i.e., Swiss market) on the World market portfolio.

E(rHome)=rf+βHomeWorld(E(rMW)rf) E(r_{Home}) = r_{f} + \beta_{Home}^{World}(E(r^{W}_{M})-r_{f})

  1. Next, estimate the difference between the two costs of equity capital for Nestlé (domestic CAPM – world CAPM)

Error=[rf+βNestleHome((rMHome)rf)][βNestleWorld((rMW)rf)]\text{Error} = [r_{f} + \beta^{Home}_{Nestle}((r^{Home}_{M})-r_{f})] - [\beta^{World}_{Nestle}((r^{W}_{M})-r_{f})]

=(βNestleHomeβHomeWorldβNestleWorld)[rMWrf]= (\beta^{Home}_{Nestle} \cdot \beta_{Home}^{World} - \beta^{World}_{Nestle}) [r^{W}_{M}-r_{f}]

Error in beta:

(βNestleHomeβHomeWorldβNestleWorld)(\beta^{Home}_{Nestle} \cdot \beta_{Home}^{World} - \beta^{World}_{Nestle})

=(0.8850.737)0.585=0.067= (0.885 \cdot 0.737) - 0.585 = 0.067

Stulz assumes an excess return on the world market portfolio E(rMW)rfE(r_{M}^{W}) - r_{f} of 5.4%

Error=0.0670.054=0.0036=0.36%\text{Error}= 0.067 \cdot 0.054 = 0.0036 = 0.36\%