Lecture 8 Revision

International Capital Budgeting

Net present Value

NPV=I0+t=1CFt(1+r)tNPV = -I_{0} + \sum ^{ \infty}_{t=1}\frac{CF_{t}}{(1+r)^{t}}

Free Cash Flow Definitions

alt text

Cash flows to Claimholders

alt text

Adjusted Present Value

APV=NPV(100%equityfinanced)+PV(taxshields)+PV(otherimperfections)APV = NPV(100\% equity financed) + PV(tax shields) + PV(other imperfections)

Stage 1: Project is 100% Equity Financed

Cash-flows: Need Free Cash Flows.

Stage 2: PV of Tax Shields

PV(TS)=τcrdDrD=τCDPV(TS) = \frac{\tau_{c}r_{d}D}{r_{D}} = \tau_{C}D

If the leverage ratio (i.e. D?V) is expected to remain stable, then discount τcrdD\tau_{c}r_{d}D using rAr_{A}

PV(TS)=τcrdDrAPV(TS) = \frac{\tau_{c}r_{d}D}{r_{A}}

Stage 3: PV of Other “Imperfections”

  1. PV of Distress Costs
  1. The Costs of Issuing Securities
  2. PV of Subsidised Financing

Parent vs Subsidiary Cash flows

Cash flows of subsidiary

alt text

alt text

Cash flow of parent

alt text

alt text

What about exchange rates?

alt text

Example: Horse for Courses

E(ri)=rf,Local+βiE(rLocalMrf,Local)E(r_{i}) = r_{f, Local} + \beta_{i}E(r^{M}_{Local}-r_{f, Local})

A real world application of the above:

E(rBHP)=rfAust+βBHP,ASX200E(rASX200rfAust)E(r_{BHP}) = r^{Aust}_{f} + \beta_{BHP, ASX200} E(r_{ASX200} - r^{Aust}_{f})

The issue is it assumes that the assets of a country are held only by local (Australian) investors, hence there would be no international diversification of risk.

Country Risk

Historical Risk Premiums

Equity Risk Premium=Base premium for developed market+country risk premium\text{Equity Risk Premium} = \text{Base premium for developed market} + \text{country risk premium}

**Measures of country risk **

  1. Sovereign rating from S&P & co. The S&P rating for Chile is A (investment grade).
  2. Country risk scores from International Country Risk Guide.
  3. Do own research by studying economic fundamentals, state of the country’s equity market.

Measures of Country Risk premiums

Bond Default spreads:

YieldUSDEmergingmarketYieldUSDdevelopedmarketYield^{Emerging market}_{USD}-Yield^{developed market}_{USD}

Country Premium=Bond YieldUSDChileBond YieldUSDUS\text{Country Premium} = \text{Bond Yield}^{Chile}_{USD} - \text{Bond Yield}^{US}_{USD}

Risk PremiumEmerging mkt=Risk PremiumDeveloped mktσemerging mktσDeveloped mkt\text{Risk Premium}_{\text{Emerging mkt}} = \text{Risk Premium}_{\text{Developed mkt}} \cdot \frac{\sigma_{\text{emerging mkt}}}{\sigma_{\text{Developed mkt}}}

Country Premium=Risk PremiumtextEmergingmktRisk PremiumDeveloped mkt\text{Country Premium} = \text{Risk Premium}_{text{Emerging mkt}} - \text{Risk Premium}_{\text{Developed mkt}}

Bond Default Spreads + Relative Equity Market Standard Deviations:

Country Premium=Default SpreadσEquityσCountry Bond\text{Country Premium} = \text{Default Spread} \cdot \frac{\sigma_{\text{Equity}}}{\sigma{\text{Country Bond}}}

The cost of Equity Capital

Brute force method

E(ri)=rf+βiE(rDevelopedMrf)+Country Risk PremiumE(r_{i}) = r_{f} + \beta_{i}E(r^{M}_{Developed} -r_{f}) + \text{Country Risk Premium}

Beta Method

E(ri)=rf+βiE[rDevelopedMrf+Country Risk Premium]E(r_{i}) = r_{f} + \beta_{i}E[r^{M}_{Developed} -r_{f} + \text{Country Risk Premium} ]

Local country risk exposure model

E(ri)=rf+βiE(rDevelopedMrf)+λCountry Risk PremiumE(r_{i}) = r_{f} + \beta_{i}E(r^{M}_{Developed} -r_{f}) + \lambda \cdot \text{Country Risk Premium}